Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer.
نویسندگان
چکیده
The very first microfluidic device used for the production of (18)F-labeled tracers for clinical research is reported along with the first human Positron Emission Tomography scan obtained with a microfluidically produced radiotracer. The system integrates all operations necessary for the transformation of [(18)F]fluoride in irradiated cyclotron target water to a dose of radiopharmaceutical suitable for use in clinical research. The key microfluidic technologies developed for the device are a fluoride concentration system and a microfluidic batch reactor assembly. Concentration of fluoride was achieved by means of absorption of the fluoride anion on a micro ion-exchange column (5 μL of resin) followed by release of the radioactivity with 45 μL of the release solution (95 ± 3% overall efficiency). The reactor assembly includes an injection-molded reactor chip and a transparent machined lid press-fitted together. The resulting 50 μL cavity has a unique shape designed to minimize losses of liquid during reactor filling and liquid evaporation. The cavity has 8 ports for gases and liquids, each equipped with a 2-way on-chip mechanical valve rated for pressure up to 20.68 bar (300 psi). The temperature is controlled by a thermoelectric heater capable of heating the reactor up to 180 °C from RT in 150 s. A camera captures live video of the processes in the reactor. HPLC-based purification and reformulation units are also integrated in the device. The system is based on "split-box architecture", with reagents loaded from outside of the radiation shielding. It can be installed either in a standard hot cell, or as a self-shielded unit. Along with a high level of integration and automation, split-box architecture allowed for multiple production runs without the user being exposed to radiation fields. The system was used to support clinical trials of [(18)F]fallypride, a neuroimaging radiopharmaceutical under IND Application #109,880.
منابع مشابه
Design and optimization of coin-shaped microreactor chips for PET radiopharmaceutical synthesis.
UNLABELLED An integrated elastomeric microfluidic device, with a footprint the size of a postage stamp, has been designed and optimized for multistep radiosynthesis of PET tracers. METHODS The unique architecture of the device is centered around a 5-microL coin-shaped reactor, which yields reaction efficiency and speed from a combination of high reagent concentration, pressurized reactions, a...
متن کاملRadiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip.
Radiotracer synthesis is an ideal application for microfluidics because only nanogram quantities are needed for positron emission tomography (PET) imaging. Thousands of radiotracers have been developed in research settings but only a few are readily available, severely limiting the biological problems that can be studied in vivo via PET. We report the development of an electrowetting-on-dielect...
متن کاملFlow optimization study of a batch microfluidics PET tracer synthesizing device
We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with t...
متن کاملHigh yield and high specific activity synthesis of [18F]fallypride in a batch microfluidic reactor for micro-PET imaging.
[(18)F]fallypride was synthesized in a batch microfluidic chip with a radiochemical yield of 65 ± 6% (n = 7) and an average specific activity of 730 GBq μmol(-1) (20 Ci μmol(-1)) (n = 4). Specific activity was ~2-fold higher than [(18)F]fallypride synthesized in a macroscale radiosynthesizer, despite starting with significantly less radioactivity, and thus safer conditions, in the microchip.
متن کاملContinuous-Flow Synthesis of N-Succinimidyl 4-[18F]fluorobenzoate Using a Single Microfluidic Chip
In the field of positron emission tomography (PET) radiochemistry, compact microreactors provide reliable and reproducible synthesis methods that reduce the use of expensive precursors for radiolabeling and make effective use of the limited space in a hot cell. To develop more compact microreactors for radiosynthesis of 18F-labeled compounds required for the multistep procedure, we attempted ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2013